Dolgozunk az Unionpedia alkalmazás helyreállításán a Google Play Áruházban
KimenőBeérkező
🌟Egyszerűsítettük a dizájnunkat a jobb navigáció érdekében!
Instagram Facebook X LinkedIn

Erősen reguláris gráf

Index Erősen reguláris gráf

A matematika, azon belül a gráfelmélet területén egy erősen reguláris gráf (strongly regular graph, srg) olyan reguláris gráf, amely néhány további követelménynek is megfelel.

Tartalomjegyzék

  1. 23 kapcsolatok: Bástyagráf, Egységmátrix, Fokszám (gráfelmélet), Girth, Gráf, Gráfelmélet, Háromszögmentes gráf, Körgráf, Komplementer gráf, Konferenciagráf, Konferenciamátrix, Matematika, Multiplicitás, Nullgráf, Paley-gráf, Petersen-gráf, Reguláris gráf, Sajátérték, Szimmetrikus gráf, Szomszédsági mátrix, Távolságreguláris gráf, Távolságtranzitív gráf, Turán-gráf.

  2. Algebrai gráfelmélet
  3. Erősen reguláris gráfok
  4. Reguláris gráfok

Bástyagráf

A matematika, azon belül a gráfelmélet területén egy bástyagráf (rook's graph) olyan gráf, ami a sakkjátékban szereplő bástya nevű figura lehetséges lépéseit jeleníti meg egy sakktáblán: a csúcsok a sakktábla egy-egy mezőjét jelképezik, az élek pedig a legális lépéseket köztük.

Megnézni Erősen reguláris gráf és Bástyagráf

Egységmátrix

A lineáris algebrában az egységmátrix (vagy n-edrendű egységmátrix) olyan n×n-es négyzetes mátrix, melynek főátlójában csupa 1-esek, a többi helyen 0-k szerepelnek (az n pedig egy tetszőleges pozitív egész számot jelöl).

Megnézni Erősen reguláris gráf és Egységmátrix

Fokszám (gráfelmélet)

A gráfelméletben egy gráfban egy csúcs fokszáma azoknak az éleknek a száma, amik illeszkednek a csúcsra.

Megnézni Erősen reguláris gráf és Fokszám (gráfelmélet)

Girth

A gráfelméletben akkor mondjuk, hogy egy gráf girth-e (ejtsd:, magyarosan görsz) k, ha a gráfban található legrövidebb kör k hosszú.

Megnézni Erősen reguláris gráf és Girth

Gráf

Címkézett gráf 6 csúccsal és 7 éllel Irányított gráf A gráf a matematikai gráfelmélet és a számítógéptudomány egyik alapvető fogalma.

Megnézni Erősen reguláris gráf és Gráf

Gráfelmélet

Gráf A gráfelmélet a matematika, ezen belül a kombinatorika egyik fontos ága.

Megnézni Erősen reguláris gráf és Gráfelmélet

Háromszögmentes gráf

A matematika, azon belül a gráfelmélet területén egy háromszögmentes gráf olyan irányítatlan gráf, melyben semelyik három csúcs élei nem alkotnak háromszöget.

Megnézni Erősen reguláris gráf és Háromszögmentes gráf

Körgráf

A körgráf egy olyan gráf, amely egy körből áll, és más élt nem tartalmaz.

Megnézni Erősen reguláris gráf és Körgráf

Komplementer gráf

A matematika, azon belül a gráfelmélet területén egy gráf komplementere (complement) alatt azt a gráfot értjük, melynek csúcsai megegyeznek csúcsaival, és két csúcs pontosan akkor szomszédos -ban, ha azok nem szomszédosak -ben.

Megnézni Erősen reguláris gráf és Komplementer gráf

Konferenciagráf

A matematika, azon belül a gráfelmélet területén egy konferenciagráf (conference graph) v, és paraméterekkel rendelkező erősen reguláris gráf.

Megnézni Erősen reguláris gráf és Konferenciagráf

Konferenciamátrix

A matematikában egy konferenciamátrix (vagy C-mátrix) olyan C négyzetes mátrix, melynek átlóján csak 0, az átlón kívül csak +1 és −1 elemek szerepelnek, és CTC az I egységmátrix többszöröse.

Megnézni Erősen reguláris gráf és Konferenciamátrix

Matematika

Pszeudoszféra Marosvásárhelyen, a Bolyai téren Euklidész: ''Elemek'' c. híres geometria-tankönyvéhez (Franciaország, XIV. szd. első évtizedei) A matematika tárgyát és módszereit tekintve, sajátos tudomány, mely részben a többi tudomány által vizsgált, részben pedig a matematika „belső” fejlődéséből adódóan létrejött (felfedezett, ill.

Megnézni Erősen reguláris gráf és Matematika

Multiplicitás

#ÁTIRÁNYÍTÁS Prímtényező.

Megnézni Erősen reguláris gráf és Multiplicitás

Nullgráf

#ÁTIRÁNYÍTÁS Üres gráf.

Megnézni Erősen reguláris gráf és Nullgráf

Paley-gráf

A matematika, azon belül a gráfelmélet területén a Paley-gráfok olyan sűrű, irányítatlan gráfok, melyek egy megfelelő véges test azon elempárjainak összekötésével keletkeznek, melyek egy kvadratikus maradékban (nem nulla négyzetelemben) különböznek.

Megnézni Erősen reguláris gráf és Paley-gráf

Petersen-gráf

A Petersen-gráf egy nevezetes speciális gráf.

Megnézni Erősen reguláris gráf és Petersen-gráf

Reguláris gráf

Egy gráf reguláris, ha minden csúcsának ugyanannyi szomszédja van, más szóval minden csúcs fokszáma azonos.

Megnézni Erősen reguláris gráf és Reguláris gráf

Sajátérték

#ÁTIRÁNYÍTÁS Sajátvektor és sajátérték.

Megnézni Erősen reguláris gráf és Sajátérték

Szimmetrikus gráf

A matematika, azon belül a gráfelmélet területén egy G gráf akkor szimmetrikus vagy ívtranzitív (symmetric / arc-transitive) ha G bármely két, u1—v1 és u2—v2 csúcsszomszéd-párjára létezik olyan automorfizmus, melyre Más szavakkal egy gráf akkor szimmetrikus, ha automorfizmus-csoportja tranzitívan hat szomszédos csúcsok rendezett párjaira (tehát olyan éleken, melyeknek irányt tulajdonítunk).

Megnézni Erősen reguláris gráf és Szimmetrikus gráf

Szomszédsági mátrix

A matematikában és a számítástechnikában egy véges irányított vagy irányítatlan n csúcsú G gráf szomszédsági mátrixa (ritkábban: adjacenciamátrixa) az az n × n-es mátrix, amelynek a nem a főátlóban szereplő a_ eleme az i csúcsból a j csúcsba vezető élek száma, míg a főátlóban található a_, vagy az i csúcsnál lévő hurkok számának kétszerese vagy csak a hurkok száma (az, hogy melyiket használjuk a matematikai felhasználástól függ.

Megnézni Erősen reguláris gráf és Szomszédsági mátrix

Távolságreguláris gráf

A matematika, azon belül a gráfelmélet területén egy távolságreguláris gráf (distance-regular graph) olyan reguláris gráf, melyben bármely két v és w csúcsot kiválasztva, a v-től j távolságra és a w-től k távolságra lévő csúcsok száma kizárólag j, k, illetve i.

Megnézni Erősen reguláris gráf és Távolságreguláris gráf

Távolságtranzitív gráf

A matematika, azon belül a gráfelmélet területén egy távolságtranzitív gráf (distance-transitive graph) olyan reguláris gráf, melynek bármely két, i távolságra lévő v és w csúcsát és ugyanolyan távolságra lévő tetszőleges x és y csúcsút tekintve van olyan automorfizmus, ami v-t x-be, illetve w-t y-ba viszi.

Megnézni Erősen reguláris gráf és Távolságtranzitív gráf

Turán-gráf

A T_m(n) n csúcsú, m osztályos Turán-gráf alatt a következő gráfot értjük: bélyegkép Az ilyen egy-egy osztályban a csúcsok függetlenek, tehát nem fut közöttük él.

Megnézni Erősen reguláris gráf és Turán-gráf

Lásd még

Algebrai gráfelmélet

Erősen reguláris gráfok

Reguláris gráfok